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Matching Coefficient of the Vector Current

Introduction

Physics of bound states of heavy particles and threshold phenomena best

described within an effective field theory – Non-Relativistic QCD (NRQCD)
and potential Non-Relativistic QCD (pNRQCD)

Prominent applications are

production of t t̄ pairs at threshold at a future linear collider

decays of bb̄ bound states

bb̄ sum rules

positronium spectra
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Matching Coefficient of the Vector Current

Matching Procedure

Chain of effective field theories: QCD → NRQCD → p(otential)NRQCD
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Matching Procedure

Chain of effective field theories: QCD → NRQCD → p(otential)NRQCD
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NRQCD vector current
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jkv = cv j̃kv +
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Matching Procedure

Chain of effective field theories: QCD → NRQCD → p(otential)NRQCD

QCD vector current

j
µ
v = Q̄γµQ

NRQCD vector current

j̃kv = φ†σkχ

jkv = cv j̃kv +O

(

1

M2

)

cv can be extracted by calculating vertex corrections involving jv and j̃v

Z2Γv = cv Z̃2Z̃−1
v Γ̃v + · · ·
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Matching Coefficient of the Vector Current

Details

full and effective theory contain the same soft, ultra-soft and potential

contributions ⇒ sufficient to calculate vertex functions at threshold

Z2Γv = cv Z̃2Z̃−1
v Γ̃v + · · ·

6 / 17



Matching Coefficient of the Vector Current

Details

full and effective theory contain the same soft, ultra-soft and potential

contributions ⇒ sufficient to calculate vertex functions at threshold

Z2Γv = cv Z̃2Z̃−1
v Γ̃v + · · ·

wave-function renormalization

(full theory) X

6 / 17



Matching Coefficient of the Vector Current

Details

full and effective theory contain the same soft, ultra-soft and potential

contributions ⇒ sufficient to calculate vertex functions at threshold

Z2Γv = cv Z̃2Z̃−1
v Γ̃v + · · ·

wave-function renormalization

(full theory) X

wave-function renormalization

(effective theory) Z̃2 = 1X

6 / 17



Matching Coefficient of the Vector Current

Details

full and effective theory contain the same soft, ultra-soft and potential

contributions ⇒ sufficient to calculate vertex functions at threshold

Z2Γv = cv Z̃2Z̃−1
v Γ̃v + · · ·

wave-function renormalization

(full theory) X

wave-function renormalization

(effective theory) Z̃2 = 1X

renormalization of the vector current

(effective theory)X

6 / 17



Matching Coefficient of the Vector Current

Details

full and effective theory contain the same soft, ultra-soft and potential

contributions ⇒ sufficient to calculate vertex functions at threshold

Z2Γv = cv Z̃2Z̃−1
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(full theory) X

wave-function renormalization

(effective theory) Z̃2 = 1X

renormalization of the vector current

(effective theory)X
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Matching Coefficient of the Vector Current

Setup of the Calculation

Feynman diagrams generated using QGRAF [Nogueira]

mapped onto 78 topologies using Q2E/EXP [Harlander,Seidensticker,Steinhauser]

Feynman integrals reduced to master integrals with CRUSHER [PM,Seidel]

master integrals in different topologies have to be identified

O(100) master integrals calculated analytically/numerically using various

techniques, e.g. sector decomposition implemented in FIESTA [Smirnov]

numerical errors added in quadrature
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Matching Coefficient of the Vector Current

Results

cv ≈ 1 − 2.667
α
(nl )
s

π
+

(

α
(nl )
s

π

)2

[−44.551 + 0.407nl ]

+

(

α
(nl )
s

π

)3
[

−2091(2) + 120.66(0.01)nl − 0.823 n2
l

]

+singlet terms

large NNNLO correction

but, on its own not a physical quantity

preliminary results confirm that singlet terms are small
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Matching Coefficient of the Vector Current

Checks

Renormalization constant Z̃v of the NRQCD current can be reproduced

Z̃v analytically known, 1/ǫ part numerically small

agreement within the error estimate at the percent level
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Checks

Renormalization constant Z̃v of the NRQCD current can be reproduced

Z̃v analytically known, 1/ǫ part numerically small

agreement within the error estimate at the percent level

Gauge independence: terms linear in ξ vanish

Change basis of master integrals and compare

default basis alternative basis

cFFF 36.55(0.11) 36.61(2.93)
cFFA −188.10(0.17) −188.04(2.91)
cFAA −97.81(0.08) −97.76(2.05)

c
(3)
v (nl = 4) −1621.7(0.4) −1621(23)

c
(3)
v (nl = 5) −1508.4(0.4) −1507(23)
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Application: Γ(Υ(1S) → ℓℓ)

Framework

Calculated in the framework of pNRQCD

Master formula

Γ(Υ(1S) → ℓ+ℓ−)

=
4πα2

9m2
b

|ψ1(0)|
2

cv

[

cv −
E1

mb

(

cv +
dv

3

)

+ . . .

]

[Beneke,Kiyo,Schuller]

Wave function ψ1 and binding energy E1 calculated in pNRQCD

[Beneke,Kiyo,Penin,Schuller]

Matching coefficients cv and dv as discussed before

First test of perturbative bound-state dynamics where all scales (hard,

soft, ultrasoft) are present
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Application: Γ(Υ(1S) → ℓℓ)

Perturbative Corrections – Pole scheme

Γ(Υ(1S) → ℓ+ℓ−)|pole

=
25α2α3

smb

35

[

1 + αs (−2.003 + 3.979 L)

+α2
s

(

9.05 − 7.44 lnαs − 13.95 L + 10.55 L
2
)

+α3
s (−0.91 + 4.78a3

+ 22.07b2ǫ+30.22cf

− 134.8(1)cg − 14.33 lnαs − 17.36 ln
2 αs

+(62.08 − 49.32 lnαs)L − 55.08 L
2 + 23.33 L

3
)

+O(α4
s)

]

=
25α2α3

smb

35

[

1 + 1.166αs + 15.2α2
s + (66.5 + 4.8a3

+22.1b2ǫ+30.2cf
− 134.8(1)cg

)

α3
s +O(α4

s)
]

=
25α2α3

smb

35
[1 + 0.28 + 0.88 − 0.16] = [1.04 ± 0.04(αs)

+0.02
−0.15(µ)] keV
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Application: Γ(Υ(1S) → ℓℓ)

Perturbative corrections – PS scheme

Γ(Υ(1S) → ℓ+ℓ−)|PS

= Γ(Υ(1S) → ℓ+ℓ−)|pole,mb→mPS
b

+
25α2α3

smPS
b

35

µf

mPS
b αs

[

0.42α2
s + α3

s

(

− 1.78 + 0.28 Lf + 1.69 L
)

+O(α4
s)
]

=
25α2α3

smPS
b

35

[

1 + 1.528αs + 16.3α2
s + (74.7 + 4.8a3

+22.1b2ǫ+30.2cf
− 134.8(1)cg

)

α3
s +O(α4

s)
]

=
25α2α3

smPS
b

35
[1 + 0.37 + 0.95 − 0.04] = [1.08 ± 0.05(αs)

+0.01
−0.20(µ)] keV
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Application: Γ(Υ(1S) → ℓℓ)

Results – µ dependence

NNNLO contribution of
moderate size

improved scale
dependence

no apparent

convergence below
µ / 3 GeV

choose µ ∈ [3, 10]GeV
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Application: Γ(Υ(1S) → ℓℓ)

Results – αs dependence

Γ(Υ(1S) → ℓ+ℓ−)PS =
[1.08(5)+0.01

−0.20] keV

µ ∈ [3, 10]GeV

Γ(Υ(1S) → ℓ+ℓ−)exp =
1.340(18) keV

theory prediction well
below exp. value

sizeable
non-perturbative

contribution?
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Application: Γ(Υ(1S) → ℓℓ)

Non-perturbative contribution

Non-perturbative contribution from gluon condensate

δnp|ψ1(0)|
2 = |ψLO

1 (0)|2 × 17.54π2
K , K =

〈αs

π
G2〉

m4
b(αsCF )6

[Pineda; Voloshin]

With 〈αs

π
G2〉 = 0.012 GeV4 and αs(3.5 GeV)

⇒ δnpΓℓℓ(Υ(1S))pole = 1.67 keV and δnpΓℓℓ(Υ(1S))PS = 2.20 keV
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Non-perturbative contribution from gluon condensate

δnp|ψ1(0)|
2 = |ψLO

1 (0)|2 × 17.54π2
K , K =

〈αs

π
G2〉

m4
b(αsCF )6

[Pineda; Voloshin]

With 〈αs

π
G2〉 = 0.012 GeV4 and αs(3.5 GeV)

⇒ δnpΓℓℓ(Υ(1S))pole = 1.67 keV and δnpΓℓℓ(Υ(1S))PS = 2.20 keV

Obtain K by comparing with mass extraction

MΥ(1S) = 2mb + E
p

1 +
624π2

425
mb(αsCF )

2
K ,

δMnp

Υ(1S) ≡ MΥ(1S) − (2m
PS
b + E

p,PS

1 ) ≈ [125 ± 16(αs)± 34(mb)
+10
−25(µ)]MeV ,

δnpΓℓℓ(Υ(1S)) =
4α2αs

9

17.54 × 425

3744
δMnp

Υ(1S)

≈ [1.28
+0.17
−0.18(αs)± 0.42(mb)

+0.20
−0.57(µ)± 0.12(mc)] keV .
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Conclusions

Conclusions

Calculated the matching coefficient for the vector curret between QCD

and NRQCD at NNNLO

Large NNNLO correction

All building blocks are now available for a complete NNNLO description of

bould state and threshold physics
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Conclusions

Calculated the matching coefficient for the vector curret between QCD

and NRQCD at NNNLO

Large NNNLO correction

All building blocks are now available for a complete NNNLO description of

bould state and threshold physics

Application: decay of Υ(1S)
for top pair production see talk by M. Steinhauser

Perturbative corrections well under control

Non-perturbative corrections sizeable and difficult to quantize

17 / 17


	Matching Coefficient of the Vector Current
	Application: ((1S) )

